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SUMMARY

CO 2 laser induced degradation of polytetrafluoroethene
yields gaseous tetrafluoroethene, hexafluoropropene and octa-
fluorocyclobutane along with solid polytetrafluoroethene depo-
sited on reactor surface . All the products except octafluoro-
cyclobutane are suggested to arise from primary cleavage of
the polymer and the relative amounts depend on incident energy
density of laser radiation and added gases . The characteriza-
tion of solid deposit by scanning electron microscopy and ad-
sorption measurements is presented .

INTRODUCTION

Conventional pyrolytic decomposition of polytetrafluoro-
ethene (PTFE) affords tetrafluoroethene along with hexafluoro-
propene and octafluorocyclobutane [1-6] . The process suffers
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from the involvement of hot vessel surface which makes the re-
action less controllable and leads to unwanted side-products

[7]
Laser-induced degradation of solid materials ensures sur-

face-less conditions and gaseous products, being transparent
to laser radiation, remain unexposed to high temperatures re-
stricted to only irradiated area of the solid material . The in-
teraction of PTFE with radiation of C0 2 lasers was studied un-
til now only with regard to processing of the material [8-11]
despite that different thermal conditions can also affect di-
stribution of decomposition products . In this note we report
on the PTFE degradation by infrared radiation of continuous-
-wave and pulsed CO 2 lasers which we examined in effort to
find out whether specific local degradation of the polymer can
lead to products different from those obtained in conventional
pyrolyses .

EXPERIMENTAL

Experiments were carried out with three different CO 2
lasers, a tunable continuous-wave ([12], laser output 10-20 W)
and pulsed TEA (0 .9 J in pulse, repetition rate 2 Hz, pulse
duration 150 ns fwhm, P . Hilendarski University Plovdiv) lasers
both operating at the P(20) line of the 10 .6 um, and a techno-
logical continuous-wave (laser output 600-1500 W ; Control
Laser, Coventry) laser operating at 10 .6 um . The irradiation
of both tunable CW and TEA lasers was focused with Ge and NaCl
lenses . Different positioning of a PTFE target with respect to
the lenses enabled to vary the incident energy density . The
target (diameter 2 .8 cm, thickness 2 cm) was housed in an eva-
cuated 500 ml spherical flask equipped with NaCl window, a
mercury manometer, a neck connecting it to a standard vacuum-
-line and with a side arm with a liquid nitrogen trap to free-
zing the condensible material after irradiation . Both flask
and trap were furnished with a sleeve with rubber septum
through which gaseous samples were withdrawn by a syringe af-
ter filling the set-up by helium and then injected into the
mass spectrometer (GC-MS Shimadzu, model QP 1000, 2 .5 m long



column with Porapak S or silicon elastomer OV-17, programmed
temperature 100-200°C and 0-150 0C, respectively) . For the iden-
tification of products both retention times and mass spectra
were compared to those of authentic samples . Quantities of ga-
seous products were estimated by mass fragmentography using
C 2 F4 , CF 3CFCF 2 and c-C 4 F 8 as standards .

Sulfur hexafluoride, 2-butene (both Fluka), hexafluoropro-
pene (Matheson), carbon dioxide (Technoplyn) and polytetrafluo-
roethylene (du Pont de Nemours) were commercial samples and
tetrafluoroethene was prepared as described in [11 .

Scanning electron microscopy of PTFE deposit was performed
on a Tesla BS microscope . I R spectra of the deposit were mea-
sured on IR Specord 75, Zeiss spectrometer .

Physical adsorption measurements were performed on a volu-
metric instrument DigiSorb 2600 (Micromerities) .

RESULTS AND DISCUSSION

CW CO 2 laser driven decomposition of PTFE yields gaseous
tetrafluoroethene, hexafluoropropene and octafluorocyclobutane
as well as solid polytetrafluoroethene deposited on the surfa-
ce throughout the reactor as a fine powder . The relative
amounts of these products are not affected by irradiation time,
but depend on the density of the incident energy . The yield of
PTFE powder ranges from 3 - 15 percent and that of tetrafluo-
roethene depends on the addition of gases (Table 1) . Yield of
tetrafluoroethene increases at the expense of octafluorocyclo-
butane upon the addition of nitrogen ; sulfur hexafluoride and
2-butene . Total amount of gaseous products increases, however,
only in the presence of SF6 and it decreases in the presence
of nitrogen and 2-butene . The latter do not absorb the CO2
laser radiation and cannot thus directly increase their energy .
Sulfur hexafluoride is, however, an excellent absorber of the
radiation and can be heated [13] within the region of laser
beam to temperatures higher than 1000°C . Faster degradation of
PTFE in the presence of SF 6 can thus be attributed to a hot
gas-phase zone near irradiated polymer surface . Lower amounts
of octafluorocyclobutane produced in the presence of all three
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(a)

Fig .1.SEM of PTFE deposit obtained with energy density 5-480 W .cm-2

(a) and 610-1500 W .cm-2 (b) .



(b)
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gases apparently relate to decreased ability of energized
C 2 F 4 molecules propelled from the polymer to cycloadd to
c-C 4 F 8 due to dilution by these gases . This assumption is in
line with the fact that addition of fluoroethenes across double
bond usually demands not only high temperatures but also higher
pressures 14,15] . Tetrafluoroethene, hexafluoropropene and
solid particles are probably the primary products of cleavage
of PTFE polymer and they do not arise later in the gas-phase .
Cleavage of PTFE into difluorocarbene does not seem probable .
This species is known 14,15] to react with olefins like 2-bu-
tene to form three-membered rings, but no products of this re-
action were detected . Hexafluoropropene can thus be assumed to
arise from 'CF 2CF 2CF2 biradical by 1,2-rearrangement of fluo-
rine .

TEA CO 2 laser-driven decomposition of PTFE yields PTFE
powder along with a mixture of tetrafluoroethene and hexafluo-
ropropene, wherein the former strongly prevails . No octafluo-
rocyclobutane is formed (Table 2) . A decrease in the total
amount of gaseous products in the presence of added gases re-
sembles that in the cw-C0 2 laser induced degradation and is
apparently associated with cooling ability of added gases .

The deposited white powder has typical absorption of an
isolated CF2 group (wavelength/absorptivity : 1155 cm-1/36 8,
1225 cm /48 %) and its structure depends on the incident den-
sity of the energy of laser radiation . Scanning electron micro-
scopy reveals that the deposit produced with the energy densi-
ty 5-480 W .cm-2 consists of spherical particles (0 .1-0.5 pm in
size) that are weakly bonded into movable aggregates (Fig . la)
and that the deposit obtained by using the energy density 610-
-1500 W.cm-2 is formed by compact fibers covered with very tiny
(less or equal 0 .1 pm in size) particles (Fig . lb) .

Physical adsorption of nitrogen resulted in adsorption
isotherms of type IV (BET classification) with no hysteresis
loop . This indicates that the PTFE powder particles are non-
-porous ; from their BET specific surface (8-12 m2 . 9-1 ) parti-
cle diameters of about 0 .1-0 .2 Am can be estimated (assuming
spherical shape and PTFE density 2 .2 g .cm-3 ) in fair agreement
with the results of scanning electron microscopy .
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The described laser induced degradation of PTFE is interes-
ting from the viewpoint of production of fine powder that has
a narrow size distribution . Similar particulate PTFE can be
also prepared by polymerization of tetrafluoroethene in the
liquid phase containing anionic surfactants [15-19] or by ex-
posing tetrafluoroethene solutions [20] or coagulated disper-
sion PTFE [21] to y-radiation . Very good stretchability of mate-
rials extruded from such powders [16-18] and their use as lub-
ricant, in preparation of electrophotographic polymer coatings
[22], ne_zferrous metal sintering [23] and perhaps its potential
suitability to other purposes in the future make the reported
laser induced degradation of PTFE a promising technique, since
it can utilize waste PTFE .
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